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Overview

•• MotivationMotivation
•• Background on fast/accurate geodesic Background on fast/accurate geodesic 

computationscomputations
•• Distance functions and geodesics on Distance functions and geodesics on 

implicit hyperimplicit hyper--surfacessurfaces
•• Unorganized pointsUnorganized points
•• Generalized geodesicsGeneralized geodesics
•• The future and concluding remarksThe future and concluding remarks



Motivation: A Few Examples
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Motivation: A Few Examples (cont.)
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Motivation: What is a Geodesic?
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•• Complexity: Complexity: O(n log n)O(n log n)

•• Advantage:Advantage: Works in any Works in any 
dimension and with any dimension and with any 
geometry (graphs)geometry (graphs)

•• Problems:Problems:
• Not consistent

• Unorganized points?

• Noise?

• Implicit surfaces?

Background: Distance and Geodesic 
Computation via Dijkstra
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Background: Distance Functions as 
Hamilton-Jacobi Equations

•• g g = weight on the hyper= weight on the hyper--surfacesurface
•• The The gg--weighted distance function between weighted distance function between 

two points two points pp and and xx on the hyperon the hyper--surface surface SS
is: is: 

gxpd g
SS =∇ ),(
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Background: Computing Distance 
Functions as Hamilton-Jacobi
Equations
•• Solved in O(n log n)  by Solved in O(n log n)  by TsitsiklisTsitsiklis, by , by 

SethianSethian, and by , and by HelmsenHelmsen, , onlyonly for for 
Euclidean spaces and Cartesian gridsEuclidean spaces and Cartesian grids

•• Solved Solved onlyonly for acute 3D triangulations by for acute 3D triangulations by 
Kimmel and Kimmel and SethianSethian

gxpd
g

=∇ ),(





The Problem

•• How to compute intrinsic distances and How to compute intrinsic distances and 
geodesics forgeodesics for
• General dimensions

• Implicit surfaces

• Unorganized noisy points (hyper-surfaces just given 
by examples)



Intermezzo: 
Tenenbaum, de Silva, et al...
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•• Problems:Problems:
• Doesn’t address noisy examples/measurements

• Restriction on sampling density and manifolds

• Uses Dijkestra (back to non consistency)

• Doesn’t work for implicit surface representations

Intermezzo: 
Tenenbaum, de Silva, et al...



Our Approach

•• We have to solve We have to solve 

gxpd g
SS =∇ ),(
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Basic Idea

Theorem (Memoli-Sapiro):

(open/closed -- any co-dimension)
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Basic idea
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Why is this good?
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Implicit Form Representation

})(:{: ofset levelS 0=Ψ=→Ψ−= xxRRn

Figure from G. Turk
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Data extension

•• Embed M:Embed M:

•• Extend I outside M:Extend I outside M:

RM:I → M II

II

II
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Unorganized points



Unorganized points (cont.)



Unorganized points
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Is this a geodesic?

noisy cleaned



Generalized geodesics: 
Harmonic maps

•• Find a smooth map from two manifolds Find a smooth map from two manifolds 
(M,g)(M,g) and and (N,h) (N,h) such thatsuch that
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Examples

•• M is an Euclidean space and N the real lineM is an Euclidean space and N the real line

•• M = [0,1], M = [0,1], geodesics!geodesics!
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Color Image Enhancement



Generalized geodesics: 
Harmonic maps

•• How we implement this? How we implement this? 
• Consider M and N defined in implicit form.



Heat flow on the plane
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Embedding the domain surface

•• Example: I:MExample: I:M-->R>R
• A map from a generic domain surface onto the real 

line
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Embedding the domain surface 
(cont.)
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Embedding the domain surface 
(cont.)

( )  IPdiv
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•• The gradient descent flow: Heat flow on The gradient descent flow: Heat flow on 
intrinsic surfacesintrinsic surfaces

•• All the computations are done in the All the computations are done in the 
Cartesian grid!Cartesian grid!



Framework
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•• If embedding with distance function:If embedding with distance function:

•• Compare with planar case:Compare with planar case:
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Example: intrinsic heat flow



L1 denoising on implicit surfaces
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L1 denoising on implicit surfaces
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Example: 
L1 denoising with constraints



Unit vector/color denoising on 
implicit surfaces

•• I is a map from the 3D surface to the 3D I is a map from the 3D surface to the 3D 
unit sphereunit sphere
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Example: Chroma denoising on 
a surface

original

noisy enhanced



Example: Direction denoising

noisy cleaned



Application (with G. Gorla and V. Interrante)



Pattern formation on implicit 3D 
surfaces

•• Follows Turing, Follows Turing, KassKass--WitkinWitkin, Turk, Turk
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Examples



Vector field visualization

•• I is random noise, diffused in direction I is random noise, diffused in direction vv
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Vector field visualization (e.g., 
principal directions)



Embedding the target manifold

•• I:MI:M-->N>N
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Embedding the target manifold 
(cont.)
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Texture mapping denoising



Texture mapping denoising



Complete Implicit Surfaces 
Representation

•• Domain and target are implicitly Domain and target are implicitly 
represented: Simple Cartesian represented: Simple Cartesian numericsnumerics

•• Extended also to subExtended also to sub--manifolds via manifolds via 
intersection of implicit surfacesintersection of implicit surfaces
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Concluding remarks

•• A general computational framework for A general computational framework for 
distance functions, geodesics, and distance functions, geodesics, and 
generalized geodesicsgeneralized geodesics

•• Implicit hyperImplicit hyper--surfaces and points cloudssurfaces and points clouds
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